Tuesday, April 26, 2022

Computer - Hardware



Hardware represents the physical and tangible components of a computer, i.e. the components that can be seen and touched.

Examples of Hardware are the following −

  • Input devices − keyboard, mouse, etc.

  • Output devices − printer, monitor, etc.

  • Secondary storage devices − Hard disk, CD, DVD, etc.

  • Internal components − CPU, motherboard, RAM, etc.

 

Relationship between Hardware and Software

  • Hardware and software are mutually dependent on each other. Both of them must work together to make a computer produce a useful output.

  • Software cannot be utilized without supporting hardware.

  • Hardware without a set of programs to operate upon cannot be utilized and is useless.

  • To get a particular job done on the computer, relevant software should be loaded into the hardware.

  • Hardware is a one-time expense.

  • Software development is very expensive and is a continuing expense.

  • Different software applications can be loaded on a hardware to run different jobs.

  • A software acts as an interface between the user and the hardware.

  • If the hardware is the 'heart' of a computer system, then the software is its 'soul'. Both are complementary to each other.

Computer - Ports



A port is a

physical docking point using which an external device can be connected to the computer. It can also be programmatic docking point through which information flows from a program to the computer or over the Internet.

Characteristics of Ports

A port has the following characteristics −

  • External devices are connected to a computer using cables and ports.

  • Ports are slots on the motherboard into which a cable of external device is plugged in.

  • Examples of external devices attached via ports are the mouse, keyboard, monitor, microphone, speakers, etc.

 

Let us now discuss a few important types of ports −

Serial Port

  • Used for external modems and older computer mouse

  • Two versions: 9 pin, 25 pin model

  • Data travels at 115 kilobits per second

Parallel Port

  • Used for scanners and printers

  • Also called printer port

  • 25 pin model

  • IEEE 1284-compliant Centronics port

PS/2 Port

  • Used for old computer keyboard and mouse

  • Also called mouse port

  • Most of the old computers provide two PS/2 port, each for the mouse and keyboard

  • IEEE 1284-compliant Centronics port

Universal Serial Bus (or USB) Port

  • It can connect all kinds of external USB devices such as external hard disk, printer, scanner, mouse, keyboard, etc.

  • It was introduced in 1997.

  • Most of the computers provide two USB ports as minimum.

  • Data travels at 12 megabits per seconds.

  • USB compliant devices can get power from a USB port.

VGA Port

  • Connects monitor to a computer's video card.

  • It has 15 holes.

  • Similar to the serial port connector. However, serial port connector has pins, VGA port has holes.

Power Connector

  • Three-pronged plug.

  • Connects to the computer's power cable that plugs into a power bar or wall socket.

Firewire Port

  • Transfers large amount of data at very fast speed.

  • Connects camcorders and video equipment to the computer.

  • Data travels at 400 to 800 megabits per seconds.

  • Invented by Apple.

  • It has three variants: 4-Pin FireWire 400 connector, 6-Pin FireWire 400 connector, and 9-Pin FireWire 800 connector.

Modem Port

  • Connects a PC's modem to the telephone network.

Ethernet Port

  • Connects to a network and high speed Internet.

  • Connects the network cable to a computer.

  • This port resides on an Ethernet Card.

  • Data travels at 10 megabits to 1000 megabits per seconds depending upon the network bandwidth.

Game Port

  • Connect a joystick to a PC

  • Now replaced by USB

Digital Video Interface, DVI port

  • Connects Flat panel LCD monitor to the computer's high-end video graphic cards.

  • Very popular among video card manufacturers.

Sockets

  • Sockets connect the microphone and speakers to the sound card of the computer.

Computer - Memory Units



Memory unit is the amount of data that can be stored in the storage unit. This storage capacity is expressed in terms of Bytes.

The following table explains the main memory storage units −

S.No.Unit & Description
1

Bit (Binary Digit)

A binary digit is logical 0 and 1 representing a passive or an active state of a component in an electric circuit.

2

Nibble

A group of 4 bits is called nibble.

3

Byte

A group of 8 bits is called byte. A byte is the smallest unit, which can represent a data item or a character.

4

Word

A computer word, like a byte, is a group of fixed number of bits processed as a unit, which varies from computer to computer but is fixed for each computer.

The length of a computer word is called word-size or word length. It may be as small as 8 bits or may be as long as 96 bits. A computer stores the information in the form of computer words.

The following table lists some higher storage units −

S.No.Unit & Description
1

Kilobyte (KB)

1 KB = 1024 Bytes

2

Megabyte (MB)

1 MB = 1024 KB

3

GigaByte (GB)

1 GB = 1024 MB

4

TeraByte (TB)

1 TB = 1024 GB

5

PetaByte (PB)

1 PB = 1024 TB

Computer - Motherboard



The motherboard serves as a single platform to connect all of the parts of a computer together. It connects the CPU, memory, hard drives, optical drives, video card, sound card, and other ports and expansion cards directly or via cables. It can be considered as the backbone of a computer.

Features of Motherboard

A motherboard comes with following features −

  • Motherboard varies greatly in supporting various types of components.

  • Motherboard supports a single type of CPU and few types of memories.

  • Video cards, hard disks, sound cards have to be compatible with the motherboard to function properly.

  • Motherboards, cases, and power supplies must be compatible to work properly together.

Popular Manufacturers

Following are the popular manufacturers of the motherboard.

  • Intel
  • ASUS
  • AOpen
  • ABIT
  • Biostar
  • Gigabyte
  • MSI

Description of Motherboard

The motherboard is mounted inside the case and is securely attached via small screws through pre-drilled holes. Motherboard contains ports to connect all of the internal components. It provides a single socket for CPU, whereas for memory, normally one or more slots are available. Motherboards provide ports to attach the floppy drive, hard drive, and optical drives via ribbon cables. Motherboard carries fans and a special port designed for power supply.

There is a peripheral card slot in front of the motherboard using which video cards, sound cards, and other expansion cards can be connected to the motherboard.

On the left side, motherboards carry a number of ports to connect the monitor, printer, mouse, keyboard, speaker, and network cables. Motherboards also provide USB ports, which allow compatible devices to be connected in plug-in/plug-out fashion. For example, pen drive, digital cameras, etc.

Thursday, April 21, 2022

Computer - Read Only Memory



ROM stands for Read Only Memory. The memory from which we can only read but cannot write on it. This type of memory is non-volatile. The information is stored permanently in such memories during manufacture. A ROM stores such instructions that are required to start a computer. This operation is referred to as bootstrap. ROM chips are not only used in the computer but also in other electronic items like washing machine and microwave oven.

Let us now discuss the various types of ROMs and their characteristics.

MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed set of data or instructions. These kind of ROMs are known as masked ROMs, which are inexpensive.

PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The user buys a blank PROM and enters the desired contents using a PROM program. Inside the PROM chip, there are small fuses which are burnt open during programming. It can be programmed only once and is not erasable.

EPROM (Erasable and Programmable Read Only Memory)

EPROM can be erased by exposing it to ultra-violet light for a duration of up to 40 minutes. Usually, an EPROM eraser achieves this function. During programming, an electrical charge is trapped in an insulated gate region. The charge is retained for more than 10 years because the charge has no leakage path. For erasing this charge, ultra-violet light is passed through a quartz crystal window (lid). This exposure to ultra-violet light dissipates the charge. During normal use, the quartz lid is sealed with a sticker.

EEPROM (Electrically Erasable and Programmable Read Only Memory)

EEPROM is programmed and erased electrically. It can be erased and reprogrammed about ten thousand times. Both erasing and programming take about 4 to 10 ms (millisecond). In EEPROM, any location can be selectively erased and programmed. EEPROMs can be erased one byte at a time, rather than erasing the entire chip. Hence, the process of reprogramming is flexible but slow.

Advantages of ROM

The advantages of ROM are as follows −

  • Non-volatile in nature
  • Cannot be accidentally changed
  • Cheaper than RAMs
  • Easy to test
  • More reliable than RAMs
  • Static and do not require refreshing
  • Contents are always known and can be verified

Random Access Memory



RAM (Random Access Memory) is the internal memory of the CPU for storing data, program, and program result. It is a read/write memory which stores data until the machine is working. As soon as the machine is switched off, data is erased.

Access time in RAM is independent of the address, that is, each storage location inside the memory is as easy to reach as other locations and takes the same amount of time. Data in the RAM can be accessed randomly but it is very expensive.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there is a power failure. Hence, a backup Uninterruptible Power System (UPS) is often used with computers. RAM is small, both in terms of its physical size and in the amount of data it can hold.

RAM is of two types −

  • Static RAM (SRAM)
  • Dynamic RAM (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power is being supplied. However, data is lost when the power gets down due to volatile nature. SRAM chips use a matrix of 6-transistors and no capacitors. Transistors do not require power to prevent leakage, so SRAM need not be refreshed on a regular basis.

There is extra space in the matrix, hence SRAM uses more chips than DRAM for the same amount of storage space, making the manufacturing costs higher. SRAM is thus used as cache memory and has very fast access.

Characteristic of Static RAM

  • Long life
  • No need to refresh
  • Faster
  • Used as cache memory
  • Large size
  • Expensive
  • High power consumption

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order to maintain the data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred times per second. DRAM is used for most system memory as it is cheap and small. All DRAMs are made up of memory cells, which are composed of one capacitor and one transistor.

Characteristics of Dynamic RAM

  • Short data lifetime
  • Needs to be refreshed continuously
  • Slower as compared to SRAM
  • Used as RAM
  • Smaller in size
  • Less expensive
  • Less power consumption

Computer - Memory



A memory is just like a human brain. It is used to store data and instructions. Computer memory is the storage space in the computer, where data is to be processed and instructions required for processing are stored. The memory is divided into large number of small parts called cells. Each location or cell has a unique address, which varies from zero to memory size minus one. For example, if the computer has 64k words, then this memory unit has 64 * 1024 = 65536 memory locations. The address of these locations varies from 0 to 65535.

Memory is primarily of three types −

  • Cache Memory
  • Primary Memory/Main Memory
  • Secondary Memory

Cache Memory

Cache memory is a very high speed semiconductor memory which can speed up the CPU. It acts as a buffer between the CPU and the main memory. It is used to hold those parts of data and program which are most frequently used by the CPU. The parts of data and programs are transferred from the disk to cache memory by the operating system, from where the CPU can access them.

Advantages

The advantages of cache memory are as follows −

  • Cache memory is faster than main memory.
  • It consumes less access time as compared to main memory.
  • It stores the program that can be executed within a short period of time.
  • It stores data for temporary use.

Disadvantages

The disadvantages of cache memory are as follows −

  • Cache memory has limited capacity.
  • It is very expensive.

Primary Memory (Main Memory)

Primary memory holds only those data and instructions on which the computer is currently working. It has a limited capacity and data is lost when power is switched off. It is generally made up of semiconductor device. These memories are not as fast as registers. The data and instruction required to be processed resides in the main memory. It is divided into two subcategories RAM and ROM.

Characteristics of Main Memory

  • These are semiconductor memories.
  • It is known as the main memory.
  • Usually volatile memory.
  • Data is lost in case power is switched off.
  • It is the working memory of the computer.
  • Faster than secondary memories.
  • A computer cannot run without the primary memory.

Secondary Memory

This type of memory is also known as external memory or non-volatile. It is slower than the main memory. These are used for storing data/information permanently. CPU directly does not access these memories, instead they are accessed via input-output routines. The contents of secondary memories are first transferred to the main memory, and then the CPU can access it. For example, disk, CD-ROM, DVD, etc.

Characteristics of Secondary Memory

  • These are magnetic and optical memories.
  • It is known as the backup memory.
  • It is a non-volatile memory.
  • Data is permanently stored even if power is switched off.
  • It is used for storage of data in a computer.
  • Computer may run without the secondary memory.
  • Slower than primary memories.

Copy and paste in PowerPoint

Copying and pasting in PowerPoint for the web differs from copying and pasting in the PowerPoint desktop application because of ...