Tuesday, January 30, 2024

How Satellites Work


A satellite is basically a self-contained communications system with the ability to receive signals from Earth and to retransmit those signals back with the use of a transponder—an integrated receiver and transmitter of radio signals. A satellite has to withstand the shock of being accelerated during launch up to the orbital velocity of 28,100 km (17,500 miles) an hour and a hostile space environment where it can be subject to radiation and extreme temperatures for its projected operational life, which can last up to 20 years. In addition, satellites have to be light, as the cost of launching a satellite is quite expensive and based on weight. To meet these challenges, satellites must be small and made of lightweight and durable materials. They must operate at a very high reliability of more than 99.9 percent in the vaccum of space with no prospect of maintenance or repair.

The main components of a satellite consist of the communications system, which includes the antennas and transponders that receive and retransmit signals, the power system, which includes the solar panels that provide power, and the propulsion system, which includes the rockets that propel the satellite. A satellite needs its own propulsion system to get itself to the right orbital location and to make occasional corrections to that position. A satellite in geostationary orbit can deviate up to a degree every year from north to south or east to west of its location because of the gravitational pull of the Moon and Sun. A satellite has thrusters that are fired occasionally to make adjustments in its position. The maintenance of a satellite’s orbital position is called “station keeping,” and the corrections made by using the satellite’s thrusters are called “attitude control.” A satellite’s life span is determined by the amount of fuel it has to power these thrusters. Once the fuel runs out, the satellite eventually drifts into space and out of operation, becoming space debris.

A satellite in orbit has to operate continuously over its entire life span. It needs internal power to be able to operate its electronic systems and communications payload. The main source of power is sunlight, which is harnessed by the satellite’s solar panels. A satellite also has batteries on board to provide power when the Sun is blocked by Earth. The batteries are recharged by the excess current generated by the solar panels when there is sunlight.

Satellites operate in extreme temperatures from −150 °C (−238 °F) to 150 °C (300 °F) and may be subject to radiation in space. Satellite components that can be exposed to radiation are shielded with aluminium and other radiation-resistant material. A satellite’s thermal system protects its sensitive electronic and mechanical components and maintains it in its optimum functioning temperature to ensure its continuous operation. A satellite’s thermal system also protects sensitive satellite components from the extreme changes in temperature by activation of cooling mechanisms when it gets too hot or heating systems when it gets too cold.

The tracking telemetry and control (TT&C) system of a satellite is a two-way communication link between the satellite and TT&C on the ground. This allows a ground station to track a satellite’s position and control the satellite’s propulsion, thermal, and other systems. It can also monitor the temperature, electrical voltages, and other important parameters of a satellite.

Communication satellites range from microsatellites weighing less than 1 kg (2.2 pounds) to large satellites weighing over 6,500 kg (14,000 pounds). Advances in miniaturization and digitalization have substantially increased the capacity of satellites over the years. Early Bird had just one transponder capable of sending just one TV channel. The Boeing 702 series of satellites, in contrast, can have more than 100 transponders, and with the use of digital compression technology each transponder can have up to 16 channels, providing more than 1,600 TV channels through one satellite.

Satellites operate in three different orbits: low Earth Orbit (LEO), medium Earth orbit (MEO), and geostationary or geosynchronous orbit (GEO). LEO satellites are positioned at an altitude between 160 km and 1,600 km (100 and 1,000 miles) above Earth. MEO satellites operate from 10,000 to 20,000 km (6,300 to 12,500 miles) from Earth. (Satellites do not operate between LEO and MEO because of the inhospitable environment for electronic components in that area, which is caused by the Van Allen radiation belt.) GEO satellites are positioned 35,786 km (22,236 miles) above Earth, where they complete one orbit in 24 hours and thus remain fixed over one spot. As mentioned above, it only takes three GEO satellites to provide global coverage, while it takes 20 or more satellites to cover the entire Earth from LEO and 10 or more in MEO. In addition, communicating with satellites in LEO and MEO requires tracking antennas on the ground to ensure seamless connection between satellites.

A signal that is bounced off a GEO satellite takes approximately 0.22 second to travel at the speed of light from Earth to the satellite and back. This delay poses some problems for applications such as voice services and mobile telephony. Therefore, most mobile and voice services usually use LEO or MEO satellites to avoid the signal delays resulting from the inherent latency in GEO satellites. GEO satellites are usually used for broadcasting and data applications because of the larger area on the ground that they can cover.

Launching a satellite into space requires a very powerful multistage rocket to propel it into the right orbit. Satellite launch providers use propietary rockets to launch satellites from sites such as the Kennedy Space Center at Cape Canaveral, Florida, the Baikonur Cosmodrome in Kazakhstan, Kourou in French Guiana, Vandenberg Air Force Base in California, Xichang in China, and Tanegashima Island in Japan.

Satellite communications use the very high-frequency range of 1–50 gigahertz (GHz; 1 gigahertz = 1,000,000,000 hertz) to transmit and receive signals. The frequency ranges or bands are identified by letters: (in order from low to high frequency) L-, S-, C-, X-, Ku-, Ka-, and V-bands. Signals in the lower range (L-, S-, and C-bands) of the satellite frequency spectrum are transmitted with low power, and thus larger antennas are needed to receive these signals. Signals in the higher end (X-, Ku-, Ka-, and V-bands) of this spectrum have more power; therefore, dishes as small as 45 cm (18 inches) in diameter can receive them. This makes the Ku-band and Ka-band spectrum ideal for direct-to-home (DTH) broadcasting, broadband data communications, and mobile telephony and data applications.

The International Telecommunication Union (ITU), a specialized agency of the United Nations, regulates satellite communications. The ITU, which is based in Geneva, Switzerland, receives and approves applications for use of orbital slots for satellites. Every two to four years the ITU convenes the World Radiocommunication Conference, which is responsible for assigning frequencies to various applications in various regions of the world. Each country’s telecommunications regulatory agency enforces these regulations and awards licenses to users of various frequencies. In the United States the regulatory body that governs frequency allocation and licensing is the Federal Communications Commissions.

Satellite Applications

Advances in satellite technology  have given rise to a healthy satellite services sector that provides various services to broadcasters, Internet Service Providers (ISPs), governments, the military, and other sectors. There are three types of communication services that satellites provide: telecommunications, broadcasting, and data communications. Telecommunication services include telephone calls and services provided to telephone companies, as well as wireless, mobile, and cellular network providers.

Broadcasting services include radio and television delivered directly to the consumer and mobile broadcasting services. DTH, or satellite television, services (such as the DirecTV and DISH Network services in the United States) are received directly by households. Cable and network programming is delivered to local stations and affiliates largely via satellite. Satellites also play an important role in delivering programming to cell phones and other mobile devices, such as personal digital assistants and laptops.

Data communications involve the transfer of data from one point to another. Corporations and organizations that require financial and other information to be exchanged between their various locations use satellites to facilitate the transfer of data through the use of very small-aperture terminal (VSAT) networks. With the growth of the Internet, a significant amount of Internet traffic goes through satellites, making ISPs one of the largest customers for satellite services.

Satellite communications technology is often used during natural disasters and emergencies when land-based communication services are down. Mobile satellite equipment can be deployed to disaster areas to provide emergency communication services.

One major technical disadvantage of satellites, particularly those in geostationary orbit, is an inherent delay in transmission. While there are ways to compensate for this delay, it makes some applications that require real-time transmission and feedback, such as voice communications, not ideal for satellites.

Satellites face competition from other media such as fibre optics, cable, and other land-based delivery systems such as microwaves and even power lines. The main advantage of satellites is that they can distribute signals from one point to many locations. As such, satellite technology is ideal for “point-to-multipoint” communications such as broadcasting. Satellite communication does not require massive investments on the ground—making it ideal for underserved and isolated areas with dispersed populations.

Satellites and other delivery mechanisms such as fibre optics, cable, and other terrestrial networks are not mutually exclusive. A combination of various delivery mechanisms may be needed, which has given rise to various hybrid solutions where satellites can be one of the links in the chain in combination with other media. Ground service providers called “teleports” have the capability to receive and transmit signals from satellites and also provide connectivity with other terrestrial networks.

 

Monday, January 29, 2024

WAN


A wide area network (also known as WAN), is a large network of information that is not tied to a single location. WANs can facilitate communication, the sharing of information and much more between devices from around the world through a WAN provider.

WANs can be vital for international businesses, but they are also essential for everyday use, as the internet is considered the largest WAN in the world. Keep reading for more information on WANs, their use, how they differ from other networks and their overall purpose for businesses and people, alike.

What Is a Wide Area Network (WAN)?

As described above, wide area networks are a form of telecommunication networks that can connect devices from multiple locations and across the globe. WANs are the largest and most expansive forms of computer networks available to date.

These networks are often established by service providers that then lease their WAN to businesses, schools, governments or the public. These customers can use the network to relay and store data or communicate with other users, no matter their location, as long as they have access to the established WAN. Access can be granted via different links, such as virtual private networks (VPNs) or lines, wireless networks, cellular networks or internet access.

For international organizations, WANs allow them to carry out their essential daily functions without delay. Employees from anywhere can use a business’s WAN to share data, communicate with coworkers or simply stay connected to the greater data resource center for that organization. Certified Network Professionals help organizations maintain their internal wide area network, as well as other critical IT infrastructure.

What’s the Difference Between Wide Area Network (WAN) and Local Area Network (LAN)?

There are many different forms of area networks, but one of the most common networks outside of WANs is the local area network, or LAN.

Whereas WANs can exist globally, without ties to a physical location through the use of a leased network provider, LANs exist within a limited area. LANs can be used to access a greater WAN (such as the internet), but only within the area where the LAN’s infrastructure can reach.

Two common examples of LANs are ethernet and wireless networks. Wireless LANs are also known as WLANs. Other forms of telecommunication networks include the following:

  • Personal area networks (PAN)
  • Metropolitan area networks (MAN)
  • Cloud or Internet Area Networks(IAN)

What Is the Purpose of a WAN Connection?

If WAN connections didn’t exist, organizations would be isolated to restricted areas or specific geographic regions. LANs would allow organizations to work within their building, but growth to outside areas — either different cities or even different countries — would not be possible because the associated infrastructure would be cost prohibitive for most organizations.

As organizations grow and become international, WANs allow them to communicate between branches, share information and stay connected. When employees travel for work, WANs allow them to access the information they need to do their job. WANs also help organizations share information with customers, as well as partner organizations, such as B2B clients or customers.

However, WANs also provide an essential service to the public. Students at universities might rely on WANs to access library databases or university research. And every day, people rely on WANs to communicate, bank, shop and more.

Advantages of a wide area network (WAN)

Covers large geographical area:

Wan covers a large geographical area of 1000 km or more If your office is in different cities or countries then you can connect your office branches through wan. ISP (Internet service provider) can give you leased lines by which you can connect different branch offices together.

Centralized data:

Your company doesn’t need to buy email, files, and backup servers, they can all reside on head office. All office branches can share the data through the head office server. You can get back up, support, and other useful data from the head office and all data are synchronized with all other office branches.

Get updated files and data:

Software companies work over the live server to exchange updated files. So all the coders and office staff get updated version of files within seconds.

A lot of application to exchange messages:

With IOT (Internet of things) and new LAN technologies, messages are being transmitted fast. A lot of web applications are available like Facebook messenger, WhatsApp, Skype by which you can communicate with friends via text, voice and video chat.

Sharing of software and resources:

Like LAN we can share software applications and other resources like a hard drive, RAM with other users on the internet. In web hosting, we share computer resources among many websites.

Global business:

Now everyone with computer skills can do business on the internet and expand his business globally. There are many types of business like a shopping cart, sale, and purchase of stocks etc.

High bandwidth:

If you get leased lines for your company then it gives high bandwidth than normal broadband connection. You can get a high data transfer rate that can increase your company productivity.

Distribute workload and decrease travel charges:

Another benefit of wide area network is that you can distribute your work to other locations. For example, you have an office in the U.S then you can hire people from any other country and communicate with them easily over WAN. It also reduces your travel charges as you can monitor the activities of your team online.

Disadvantages of a wide area network (WAN)

Security problems:

WAN has more security problem as compare to MAN and LAN. WAN has many technologies combined with each other which can create a security gap.

Needs firewall and antivirus software:

As data transferred on the internet can be accessed and changed by hackers so firewall needs to be enabled in the computer. Some people can also inject a virus into the computer so antivirus software needs to be installed. Other security software also needs to be installed on different points in WAN.

The setup cost is high:

Setting up WAN for the first time in office costs higher money. It may involve purchasing routers, switches, and extra security software.

Troubleshooting problems:

As WAN covers a lot of areas so fixing the problem in it is difficult. Most of WAN wires go into the sea and wires get broken sometimes. It involves a lot of resources to fix lines under the sea. In ISP (Internet service provider) head office many of internet lines, routers are mixed up in rooms and fixing issues on the internet requires a full-time staff.

Server down and disconnection issue:

In some areas, ISP faces problems due to electricity supply or bad lines structure. Customers often face connectivity issues or slow Internet speed issues. The solution to this is to purchase a dedicated line from ISP.

Examples of wide area network (WAN)

Some examples of WAN are below:

  • Internet
  • U.S defense department
  • Most big banks
  • Airline companies
  • Stock brokerages
  • Railway reservations counter
  • Large telecommunications companies like Airtel store IT department
  • Satellite systems
  • Cable companies
  • Network providers

Monday, January 22, 2024

Propagation Losses


Antenna and Wave propagation plays a vital role in wireless communication networks. An antenna is an electrical conductor or a system of conductors that radiates/collects (transmits or receives) electromagnetic energy into/from space. An idealized isotropic antenna radiates equally in all directions.

Propagation Mechanisms

Wireless transmissions propagate in three modes. They are −

  • Ground-wave propagation
  • Sky-wave propagation
  • Line-of-sight propagation

Ground wave propagation follows the contour of the earth, while sky wave propagation uses reflection by both earth and ionosphere.

Line of sight propagation requires the transmitting and receiving antennas to be within the line of sight of each other. Depending upon the frequency of the underlying signal, the particular mode of propagation is followed.

Examples of ground wave and sky wave communication are AM radio and international broadcasts such as BBC. Above 30 MHz, neither ground wave nor sky wave propagation operates and the communication is through line of sight.

Transmission Limitations

In this section, we will discuss the various limitations that affect electromagnetic wave transmissions. Let us start with attenuation.

Attenuation

The strength of signal falls with distance over transmission medium. The extent of attenuation is a function of distance, transmission medium, as well as the frequency of the underlying transmission.

Distortion

Since signals at different frequencies attenuate to different extents, a signal comprising of components over a range of frequencies gets distorted, i.e., the shape of the received signal changes.

A standard method of resolving this problem (and recovering the original shape) is to amplify higher frequencies and thus equalize attenuation over a band of frequencies.

Dispersion

Dispersion is the phenomenon of spreading of a burst of electromagnetic energy during propagation. Bursts of data sent in rapid succession tend to merge due to dispersion.

Noise

The most pervasive form of noise is thermal noise, which is often modeled using an additive Gaussian model. Thermal noise is due to thermal agitation of electrons and is uniformly distributed across the frequency spectrum.

Other forms of noise include −

  • Inter modulation noise (caused by signals produced at frequencies that are sums or differences of carrier frequencies)

  • Crosstalk (interference between two signals)

  • Impulse noise (irregular pulses of high energy caused by external electromagnetic disturbances).

While an impulse noise may not have a significant impact on analog data, it has a noticeable effect on digital data, causing burst errors.

Fading

Fading refers to the variation of the signal strength with respect to time/distance and is widely prevalent in wireless transmissions. The most common causes of fading in the wireless environment are multipath propagation and mobility (of objects as well as the communicating devices).

Multipath propagation

In wireless media, signals propagate using three principles, which are reflection, scattering, and diffraction.

  • Reflection occurs when the signal encounters a large solid surface, whose size is much larger than the wavelength of the signal, e.g., a solid wall.

  • Diffraction occurs when the signal encounters an edge or a corner, whose size is larger than the wavelength of the signal, e.g., an edge of a wall.

  • Scattering occurs when the signal encounters small objects of size smaller than the wavelength of the signal.

One consequence of multipath propagation is that multiple copies of a signal propagation along multiple different paths, arrive at any point at different times. So the signal received at a point is not only affected by the inherent noise, distortion, attenuation, and dispersion in the channel but also the interaction of signals propagated along multiple paths.

Delay spread

Suppose we transmit a probing pulse from a location and measure the received signal at the recipient location as a function of time. The signal power of the received signal spreads over time due to multipath propagation.

The delay spread is determined by the density function of the resulting spread of the delay over time. Average delay spread and root mean square delay spread are the two parameters that can be calculated.

Doppler spread

This is a measure of spectral broadening caused by the rate of change of the mobile radio channel. It is caused by either relative motion between the mobile and base station or by the movement of objects in the channel.

When the velocity of the mobile is high, the Doppler spread is high, and the resulting channel variations are faster than that of the baseband signal, this is referred to as fast fading. When channel variations are slower than the baseband signal variations, then the resulting fading is referred to as slow fading.

Friday, January 19, 2024

Terms used in Mobile Communication


MS (Mobile Station)

Mobile station is combination of user's all equipment (mobile phone, SIM, card etc.) and software needed for communication with a GSM network.

Mobile station communicates the information with the user and modifies it to the transmission protocols of the air interface to communicate with the Base Station Subsystem (BSS).

The information of the user communicates with the MS through a microphone and speaker for the speech, keyboard and display for short messaging and wire and cable connection for other data terminals.

In GSM, MS consists of four main components:

  • Mobile Termination (MT)
  • Terminal Equipment (ME)
  • Terminal Adapter (MA)
  • Subscriber Identity Module (SIM)

Base Station (BS)

  • Base station transmits and receives user data in the cellular network to customer phones and cellular devices. It is connected to an antenna (or multiple antennas).
  • BS is a fixed point of communication for customer cellular phones on a carrier network.
  • BSs (Base stations) are company specific. However one single site may host multiple base stations from competing telecommunication companies.
  • Different types of base stations can be setup according to the coverage required, as follows:
    • Macrocells
    • Picocells

Subscriber Identity Module (SIM)

It is a smart card which stores data for GSM cellular telephone subscriber. It is also called portable memory chip. Data stored by the SIM includes user identity, location and phone number, network authorization data, contact lists, personal security keys and stored text messages. Security features contains authentication and encryption to protect data and prevent eavesdropping.

Base Transceiver Station (BTS)

The BTS is used for data transmission between the mobile phone and the base station. It has a equipment for encryption and decryption of communications, spectrum filtering equipment, antenna and transceivers (TRX).

A Base Transceiver Station consists of the following:

  • Antennas that relays radio messages
  • Transceivers
  • Duplexers
  • Amplifiers

Mobile Switching Center (MSC)

It is a telephone exchange that is actually used to make the connection between mobile users within the network, from mobile users to the public switched network (PSTN) and from mobile users to other mobile networks.

MSC is the hardware part of wireless switch. It also provides support for registration and maintenance of the connection with the mobile stations.

Base Station Controller (BSC)

BSC is used to control a group of Base Transceiver Stations. It is used for the allocation of radio resources to a mobile call and for the handovers that are made between base stations (BS) under their control. Other handovers are controlled by the MSC.

Channels

Channel is a range of frequency allotted to particular service or systems.

Carrier

Carrier is a company to which your mobile device connects to, such as Idea, Airtel, BSNL, Vodafone etc.

Transceiver

Transceiver is a device capable to perform simultaneously transmitting and receiving radio signals.

Gateway

It a network point that acts as an entrance to another network.

GSM

GSM is called Global System for Mobile Communication. It is a standard to describe protocols for digital cellular networks used by mobile phones.

Tuesday, January 16, 2024

Bluetooth


A Bluetooth technology is a high speed low powered wireless technology link that is designed to connect phones or other portable equipment together. It is a specification (IEEE 802.15.1) for the use of low power radio communications to link phones, computers and other network devices over short distance without wires. Wireless signals transmitted with Bluetooth cover short distances, typically up to 30 feet (10 meters).

It is achieved by embedded low cost transceivers into the devices. It supports on the frequency band of 2.45GHz and can support upto 721KBps along with three voice channels. This frequency band has been set aside by international agreement for the use of industrial, scientific and medical devices (ISM).rd-compatible with 1.0 devices.

Bluetooth can connect up to “eight devices” simultaneously and each device offers a unique 48 bit address from the IEEE 802 standard with the connections being made point to point or multipoint.

History Of Bluetooth

Bluetooth wireless technology was named after a Danish Viking and King, Harald  Blatand; his last name means “Bluetooth” in English. He is credited with uniting Denmark and Norway, just as Bluetooth wireless technology is credited with uniting two disparate devices.

The Bluetooth technology emerged from the task undertaken by Ericsson Mobile Communications in 1994 to find alternative to the use of cables for communication between mobile phones and other devices. In 1998, the companies Ericsson, IBM, Nokia and Toshiba formed the Bluetooth Special Interest Group (SIG) which published the 1st version in 1999.

The first version was 1.2 standard with a data rate speed of 1Mbps. The second version was 2.0+EDR with a data rate speed of 3Mbps. The third was 3.0+HS with speed of 24 Mbps. The latest version is 4.0.

How Bluetooth Works:

Bluetooth Network consists of a Personal Area Network or a piconet which contains a minimum of 2 to maximum of 8 bluetooth peer devices- Usually a single master and upto 7 slaves. A master is the device which initiates communication with other devices. The master device governs the communications link and traffic between itself and the slave devices associated with it. A slave device is the device that responds to the master device. Slave devices are required to synchronize their transmit/receive timing with that of the masters. In addition, transmissions by slave devices are governed by the master device (i.e., the master device dictates when a slave device may transmit). Specifically, a slave may only begin its transmissions in a time slot immediately following the time slot in which it was addressed by the master, or in a time slot explicitly reserved for use by the slave device.

The frequency hopping sequence is defined by the Bluetooth device address (BD_ADDR) of the master device.  The master device first sends a radio signal asking for response from the particular slave devices within the range of addresses. The slaves respond and synchronize their hop frequency as well as clock with that of the master device.

Scatternets are created when a device becomes an active member of more than one piconet. Essentially, the adjoining device shares its time slots among the different piconets.

Bluetooth Specifications:

  • Core Specifications : It  defines the Bluetooth protocol stack and the requirements for testing and qualification of Bluetooth-based products.
  • The profiles specification:  It defines usage models that provide detailed information about how to use the Bluetooth protocol for various types of applications.

 The core specification consists of 5 layers:

  • Radio: Radio specifies the requirements for radio transmission – including frequency, modulation, and power characteristics – for a Bluetooth transceiver.
  • Baseband Layer: It defines physical and logical channels and link types (voice or data); specifies various packet formats, transmit and receive timing, channel control, and the mechanism for frequency hopping (hop selection) and device addressing.It specifies point to point or point to multipoint links. The length of a packet can range from 68 bits (shortened access code) to a maximum of 3071 bits.
  • LMP- Link Manager Protocol (LMP): defines the procedures for link set up and ongoing link management.
  • Logical Link Control and Adaptation Protocol (L2CAP): is responsible for adapting upper-layer protocols to the baseband layer.
  •  Service Discovery Protocol (SDP): – allows a Bluetooth device to query other Bluetooth devices for device information, services provided, and the characteristics of those services.

The 1st three layers comprise the Bluetooth module whereas the last two layers make up the host. The interfacing between these two logical groups is called Host Controller Interface.

Advantages of Bluetooth Technology:

  • It removes the problem of radio interference by using a technique called Speed Frequency Hopping.  This technique utilizes 79 channels of particular frequency band, with each device accessing the channel for only 625 microseconds, i.e. the device must toggle between transmitting and receiving data from one time slot to another. This implies the transmitters change frequencies 1,600 times every second, meaning that more devices can make full use of a limited slice of the radio spectrum. This ensures that the interference won’t take place as each transmitter will be on different frequencies.
  • The power consumption of the chip (consisting of transceiver) is low, at about 0.3mW, which makes it possible for least utilization of battery life.
  • It guarantees security at bit level. The authentication is controlled using a 128bit key.
  • It is possible to use Bluetooth for both transferring of data and verbal communication as Bluetooth can support data channels of up to 3 similar voice channels.
  • It overcomes the constraints of line of sight and one to one communication as in other mode of wireless communications like infrared.

Bluetooth Applications:

Cordless Desktop: All (or most) of the peripheral devices (e.g., mouse, keyboard, printer, speakers, etc.) are connected to the PC cordlessly.

Ultimate headset: It can be used to allow one headset to be used with myriad devices, including telephones, portable computers, stereos, etc.

Automatic synchronization: This usage model makes use of the hidden computing paradigm, which focuses on applications in which devices automatically carry out certain tasks on behalf of the user without user intervention or awareness.

Multimedia Transfer:- Exchanging of multimedia data like songs, videos, pictures can be transferred among devices using Bluetooth.

 

 

Monday, January 15, 2024

Internet


The Internet (or internet) is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices.

Types of Internet Connections

Modern technology has come a long way, especially in the last few years. There is a lot that we can do that seemed impossible just a decade or two, like instantly connecting with people all over the world, and your options for doing so are growing every day. Internet service is one of those quickly evolving industries, and it can be hard to determine what kind of service you may need or what is available to you. Clarus Broadband wants you to have access to amazing high-speed internet no matter where you live, which is why we have made it our mission to bring internet service to the communities that need it most. Keep reading to learn more about all the different kinds of internet connections out there, and explore our site today to learn what you can do to bring lightning fast internet service to your hometown!

Dial-Up

At the inception of the internet, dial-up was your only possible connection. Your computer dials a phone number to give you access to the World Wide Web, which comes with some obvious problems. The biggest issue for most has been the fact that you can’t make or receive phone calls while someone is using the computer. Many adults today can probably remember being pulled away from the keyboard so their parents could use the phone. Such a problem probably would never even occur to most kids now, and that’s because many have moved away from dial-up internet. It may be cheap, but it is slow and ineffective.

If you are a resident of rural Texas, dial-up may be one of the few internet service connections available to you, which is why Clarus Broadband is working so hard with local communities in Belton, Copperas Cove, Gatesville, and more to give you better options. Learn how you can become a champion and bring better internet service to your town today!

Satellite

Satellite internet is another option often available where broadband – which we will discuss in a moment – is not, which means it is another one of the more common connection types used in rural areas. As you might expect, satellite internet offers your computer a connection by communicating with a satellite orbiting Earth. It requires a satellite dish with a clear line-of-sight, which is just one drawback. Another major problem you may face? The signal from your satellite dish has to travel a long way – thousands of miles – which is why the connection can be delayed when compared to broadband. It can provide high-speed internet, but it’s not a great option for online gaming or video streaming, because you share bandwidth with other people in the area.

Broadband

The term “broadband” is shorthand for “broad bandwidth,” and it offers significantly better high-speed connections than dial-up. However, you should know that the word “broadband” is often used to describe a wide variety of internet connection types, and not always in a way that is technically correct. For our purposes in this article, we are going to use it in its more general sense and then explain more specific connection types that may be categorized under “broadband”, correctly or incorrectly.

DSL

DSL stands for “digital subscriber line” and in its simplest form, it can be explained as a better, more high-tech version of dial-up internet. It still uses phone lines to connect, but it uses two lines and leaves room for you to continue to make and receive calls. It is a significantly faster and higher quality internet connection when compared to dial-up.

Cable

Rather than phone lines, cable internet operates over – you guessed it – cable TV lines. Cable internet offers greater bandwidth than DSL, and therefore faster access. Speed can depend on how you use your access, however, and whether you are uploading or downloading any files.

Wireless

The abbreviation “WiFi” has almost become synonymous with “internet” these days, but it refers to a specific kind of internet connection that utilizes radio frequencies rather than phone or cable lines. It’s always on, and it can be access from anywhere within network range. It’s one of the fastest options on the market.

Fiber Optics

When you want the best of the best internet connections, you want fiber optics. Fiber optics have tapped into an innovative and relatively new way to transmit signals using light conveyed through cables made of a special, flexible plastic or glass. Nothing in the universe travels as fast as light, which is one of the reasons why fiber optics offers such blisteringly fast internet speeds. It’s a great option for houses with multiple devices in use and the speed of your connection is unaffected by your neighbors’ internet use, which is not something many other types of internet service can claim.

 

Wireless Technology Trends:

Wireless technology plays a key role in today’s communications, and new forms of it will become central to emerging technologies including robots, drones, self-driving vehicles and new medical devices over the next five years. Gartner, Inc. has identified the top 10 wireless technology trends for enterprise architecture (EA) and technology innovation leaders.

“Business and IT leaders need to be aware of these technologies and trends now,” said Nick Jones, distinguished research vice president at Gartner. “Many areas of wireless innovation will involve immature technologies, such as 5G and millimeter wave, and may require skills that organizations currently don’t possess. EA and technology innovation leaders seeking to drive innovation and technology transformation should identify and pilot innovative and emerging wireless technologies to determine their potential and create an adoption roadmap.”

The top 10 wireless technology trends are:

1. Wi-Fi

Wi-Fi has been around a long time and will remain the primary high-performance networking technology for homes and offices through 2024. Beyond simple communications, Wi-Fi will find new roles — for example, in radar systems or as a component in two-factor authentication systems.

2. 5G Cellular

5G cellular systems are starting to be deployed in 2019 and 2020. The complete rollout will take five to eight years. In some cases, the technology may supplement Wi-Fi, as it is more cost-effective for high-speed data networking in large sites, such as ports, airports and factories. “5G is still immature, and initially, most network operators will focus on selling high-speed broadband. However, the 5G standard is evolving and future iterations will improve 5G in areas such as the Internet of things(IoT) and low-latency applications,” Mr. Jones added.

3. Vehicle-to-Everything (V2X) Wireless

Both conventional and self-driving card will need to communicate with each other, as well as with road infrastructure. This will be enabled by V2X wireless systems. In addition to exchanging information and status data, V2X can provide a multitude of other services, such as safety capabilities, navigation support and infotainment.

“V2X will eventually become a legal requirement for all new vehicles. But even before this happens, we expect to see some vehicles incorporating the necessary protocols,” said Mr. Jones. “However, those V2X systems that use cellular will need a 5G network to achieve their full potential.”

4. Long-Range Wireless Power

First-generation wireless power systems have not delivered the revolutionary user experience that manufacturers had hoped for. In terms of the user experience, the need to place devices on a specific charger point is only slightly better than charging via cable. However, several new technologies can charge devices at ranges of up to one meter or over a table or desk surface.

“Long-range wireless power could eventually eliminate power cables from desktop devices such as laptops, monitors and even kitchen appliances. This will allow for completely new designs of work and living spaces,” Mr. Jones said.

5. Low-Power Wide-Area (LPWA) Networks

LPWA networks provide low-bandwidth connectivity for IoT applications in a power-efficient way to support things that need a long battery life. They typically cover very large areas, such as cities or even entire countries. Current LPWA technologies include Narrowband IoT (NB-IoT), Long Term Evolution for Machines (LTE-M), LoRa and Sigfox. The modules are relatively inexpensive, so IoT manufacturers can use them to enable small, low-cost, battery-powered devices such as sensors and trackers.

6. Wireless Sensing

The absorption and reflection of wireless signals can be used for sensing purposes. Wireless sensing technology can be used, for example, as an indoor radar system for robots and drones. Virtual Assistants can also use radar tracking to improve their performance when multiple people are speaking in the same room.

“Sensor data is the fuel of the IoT. Accordingly, new sensor technologies enable innovative types of applications and services,” Mr. Jones said. “Systems including wireless sensing will be integrated in a multitude of use cases, ranging from medical diagnostics to object recognition and smart home interaction.”

7. Enhanced Wireless Location Tracking

A key trend in the wireless domain is for wireless communication systems to sense the locations of devices connected to them. High-precision tracking to around one-meter accuracy will be enabled by the forthcoming IEEE 802.11az standard and is intended to be a feature of future 5G standards.

“Location is a key data point needed in various business areas, such as consumer marketing, supply chain and the IoT. For example, high-precision location tracking is essential for applications involving indoor robots and drones,” said Mr. Jones.

8. Millimeter Wave Wireless

Millimeter wave wireless technology operates at frequencies in the range of 30 to 300 gigahertz, with wavelengths in the range of 1 to 10 millimeters. The technology can be used by wireless systems such as Wi-Fi and 5G for short-range, high-bandwidth communications (for example, 4K and 8K video streaming).

9. Backscatter Networking

Backscatter networking technology can send data with very low power consumption. This feature makes it ideal for small networked devices. It will be particularly important in applications where an area is already saturated with wireless signals and there is a need for relatively simple IoT devices, such as sensors in smart homes and offices.

10. Software-Defined Radio (SDR)

SDR shifts the majority of the signal processing in a radio system away from chips and into software. This enables the radio to support more frequencies and protocols. The technology has been available for many years, but has never taken off as it is more expensive than dedicated chips. However, Gartner expects SDR to grow in popularity as new protocols emerge. As older protocols are rarely retired, SDR will enable a device to support legacy protocols, with new protocols simply being enabled via software upgrade.

 

What is computer security?

Computer security basically is the protection of computer systems and information from harm, theft, and unauthorized use. It is the process ...